Code: EE8T4C

IV B.Tech - II Semester - Regular Examinations - April 2016

DIGITAL CONTROL SYSTEMS (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Answer any FIVE questions. All questions carry equal marks

- 1. a) Explain clearly the configuration of basic digital control scheme with the help of neat block diagram. 8 M
 - b) Explain 6 M
 - i) Successive approximation ADC
 - ii) Tracking ADC
- 2. a) Find the Z-transforms of the following

(i)
$$f(t) = e^{-at} \sin \omega t$$
 (ii) $F(s) = \frac{1}{s^2(s+1)}$ 7 M

b) Find the inverse Z-transforms of the following 7 M

(i)
$$F(z) = \frac{z-4}{(z-1)^2(z-2)}$$
 (ii) $F(z) = \frac{z^2}{(z-1)(z-0.2)}$

3. a) Solve the following differential equation 7 M y(k+2) + 3y(k+1) + 2y(k) = 0, y(-1) = -1/2, y(-2) = 3/4

- b) Obtain the pulse transfer function of closed loop system in 7 M the following cases.

 - i) Error sampling ii) Input sampling
- Determine the solution of state equation for discrete time 14 M system by using

 - a) Recursion procedure b) Z –transform method
- 5. a) Derive the condition for complete state controllability.

4 M

b) Examine whether the discrete data system

10 M

$$\mathbf{x}(\mathbf{k}+1) = \begin{bmatrix} 0 & 1 \\ -2 & -2 \end{bmatrix} \mathbf{x} (\mathbf{k}) + \begin{bmatrix} 1 \\ -1 \end{bmatrix} \mathbf{u} (\mathbf{k}),$$

$$y(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(k)$$

- Is i) State controllable ii) Output controllable and
 - iii) Observable.
- 5 M 6. a) Explain the mapping between s-plane and z-plane.
 - b) Consider the discrete time unity-feedback control system, whose open loop pulse transfer function is given by $G(z) = \frac{K(0.3679Z + 0.2642)}{(Z - 0.3679)(Z - 1)}$. Determine the range of gain K for stability by use of the Jury's stability test. 9 M
- 7. a) Discuss the design procedure of lead-lag compensation in 7 M frequency domain.

- b) Explain the design procedure of digital controller through bilinear transformation.

 7 M
- 8. a) Define the following terms

6 M

- i) Full order state observer
- ii) Minimum order state observer
- iii) Reduced order observer.
- b) Consider the system described by x(k+1) = Gx(k) + Hu(k)Where $G = \begin{bmatrix} 0 & 1 \\ -0.16 & -1 \end{bmatrix}$, $H = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ Determine a suitable state feedback gain matrix K such that the system will have the close loop poles at z = 0.5 + j.05 and z = 0.5 - j.05.